1. Manz, F. History of nutrition and acid-base physiology. Eur J Nutr 2001;40:189–199
2. Naumann J, Bieler D: Hydrogencarbonat in Mineralwasser und Mobilität im Alter. Ernährung & Medizin 2016; 31(03):113-119. DOI: 10.1055/s-0042-108677
3. Dawson-Hughes B, Harris SS, Palermo NJ et al. Treatment with potassium bicarbonate lowers calcium excretion and bone resorption in older men and women. J Clin Endocrinol Metab. 2009;94(1):96-102.
4. Kok J, Iestra, JA, Doorenbos et al. The effects of dietary excesses in animal protein and in sodium on the composition and the crystallization kinetics of calcium oxalate monohydrate in urines of healthy men. J Clin. Endocrinol Metab 1990;71: 861–867
5. Reddy ST, Wang CY, Sakhaee, K et al. Effect of low-carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium metabolism. Am J Kidney Dis. 2002;40: 265–274
6. Giannini S, Nobile M, Sartori L et al. Acute effects of moderate dietary protein restriction in patients with idiopathic hypercalciuria and calcium nephrolithiasis. Am J Clin Nutr 1999;69:267–271
7. Siener R, Jahnen A, Hesse A: Influence of a mineral water rich in calcium, magnesium and bicarbonate on urine composition and the risk of calcium oxalate crystallization. Eur J Clin Nutr 2004;58:270–276
8. Beer AM, Uebelhack R, Pohl U. Efficacy and tolerability of hydrogen carbonate-rich water for heartburn. World J Gastrointest Pathophysiol. 2016;
9. Wagner G, Schröder U, Campo dell’Orto M: Hydrogencarbonat. Sportärztezeitung 2017;01: 86-91
10. Naumann J, Sadghiani C, Alt F et al. Effects of Sulphate-Rich Mineral Water on Functional Constipation: A Double-Blind, Randomized, Placebo-Controlled Study. Forschende Komplementärmedizin 2016;23:1-8
11. Rodella LF, Bonazza V, Labanca M et al. A review of the effects of dietary silicon intake on bone homeostasis and Regeneration. J Nutr Health Aging. 2014 Nov;18(9):820-6
12. Kim MH, Bae YJ, Choi MK et al. Silicon supplementation improves the bone mineral density of calcium-deficient ovariectomized rats by reducing bone resorption. Biol Trace Elem Res. 2009 Jun
13. Naumann J, Prävention mit Silizium aus Nahrung, Wasser und Supplementen: ein qualitativer Review. Aktuel Ernährungsmed 2015;40:1-5
14. Kapusta ND et al. Lithium in drinking water and suicide mortality. Br J Psychiatry. 2011;198(5):346-50.
15. Kessing LV et al. Association of Lithium in Drinking Water With the Incidence of Dementia. JAMA Psychiatry. 2017;74(10):1005–1010.
16. Forlenza O et al. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br J Psychiatry 2011; 198: 351–6
Abstract: A variety of nutritional deficiencies, acquired or genetic diseases, pharmaceutical therapies or intoxications can cause anaemia. It is very prevalent worldwide and increases with age. The diagnosis begins with a reticulocyte count in the blood and determination of the MCV. Subsequently, further laboratory tests must be used as specifically as possible. Newer markers and algorithms are particularly helpful in differentiating iron deficiency anaemia (IDA) and anaemia of chronic disease (ACD). Keys Words: Anaemia, iron deficiency anaemia, anaemia of chronic disease, reticulocytes
Pour les illustrations, l’auteur remercie le Pr Lothar Thomas, MVZ Aschaffenburg, Sysmex Europe, Hambourg et la Dre Saskia Brunner, LaboSalamin, Sierre.
Cet article est une traduction de « der informierte arzt » 12_2021
Copyright bei Aerzteverlag medinfo AG
Prof. Dr. med. Andreas Huber
Private Universität im Fürstentum Liechtenstein
Dorfstrasse 24
FL-9495 Triesen
1. Pascolo S. Messenger RNA-based vaccines. Expert Opin Biol Ther 2004; 4(8):1285-1294.
2. Pascolo S. Vaccination with messenger RNA. Methods Mol Med 2006; 127:23-40.
3. Pascolo S. Vaccination with messenger RNA (mRNA). Handb Exp Pharmacol 2008; (183):221-235.
4. Pascolo S. The messenger’s great message for vaccination. Expert Rev Vaccines 2015; 14(2):153-156.
5. Pascolo S. Messenger RNA: The Inexpensive Biopharmaceutical. Journal of Multidisciplinary Engineering Science and Technology (JMEST) 2017; 4(3):6937-6941.
6. Pascolo S. Synthetic Messenger RNA-Based Vaccines: from Scorn to Hype. Viruses 2021; 13(2).
7. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med 2020.
8. Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci U S A 2017; 114(35):E7348-E7357.
9. Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, et al. Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N Engl J Med 2020; 383(24):2320-2332.
10. Stephen SL, Montini E, Sivanandam VG, Al-Dhalimy M, Kestler HA, Finegold M, et al. Chromosomal integration of adenoviral vector DNA in vivo. J Virol 2010; 84(19):9987-9994.
11. Knoll MD, Wonodi C. Oxford-AstraZeneca COVID-19 vaccine efficacy. Lancet 2021; 397(10269):72-74.
12. Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021; 397(10275):671-681.
13. Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot AM, et al. Interim Results of a Phase 1-2a Trial of Ad26.COV2.S Covid-19 Vaccine. N Engl J Med 2021.
14. Martinon F, Krishnan S, Lenzen G, Magne R, Gomard E, Guillet JG, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 1993; 23(7):1719-1722.
15. Probst J, Weide B, Scheel B, Pichler BJ, Hoerr I, Rammensee HG, et al. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther 2007; 14(15):1175-1180.
16. Weide B, Carralot JP, Reese A, Scheel B, Eigentler TK, Hoerr I, et al. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother 2008; 31(2):180-188.
17. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines – a new era in vaccinology. Nat Rev Drug Discov 2018; 17(4):261-279.
18. Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016; 534(7607):396-401.
19. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017; 547(7662):222-226.
20. Kariko K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005; 23(2):165-175.
21. Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H, DeMaso CR, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 2017; 543(7644):248-251.
22. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med 2020.
23. Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 2021.
24. Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. N Engl J Med 2021.
25. Meo SA, Bukhari IA, Akram J, Meo AS, Klonoff DC. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines. Eur Rev Med Pharmacol Sci 2021; 25(3):1663-1669.
Source A : https://johnsonandjohnson.gcs-web.com/static-files/1c979f4f-cad3-4f8b-9a22-69aaac503570).
Source B: https://ec.europa.eu/commission/presscorner/detail/en/IP_14_229).
Source C : https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html).
Source D : https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/impfen.html
Source E : https://clinicaltrials.gov/ct2/show/NCT04527575)
Source F : https://www.aekstmk.or.at/images/content/pdfs/covid19/Impf/Lancet%202021%20AZD1222%20efficacy%20against%20B1_1_7_%20variant.pdf)
Source G : https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3777268
Source H : (https://www.fda.gov/media/146265/download).
Source I : (https://www.medrxiv.org/content/10.1101/2020.11.09.20228551v1)
1. Wilson F Abdo et al. The clinical approach to movement disorders Nat Rev. Neurology 2010:6: 26- 37
2. Erro R et al. The role of disease duration and severity on novel clinical subtypes of Parkinson disease Park Dis Related Disord: 2020; 73: 31-34.
3. Bhidayasiri R et al. Red flags phenotyping : a systematic review on clinical features in parkinsonian disorders. Park Related Dis 2019: 59: 82-92.
1. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease. Eur Heart J. 2013;
2. Neumann FJ, Sechtem U, Banning AP, Bonaros N, Bueno H, Bugiardini R, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal. 2020.
3. Xaplanteris P, Fournier S, Pijls NHJ, Fearon WF, Barbato E, Tonino PAL, et al. Five-Year Outcomes with PCI Guided by Fractional Flow Reserve. N Engl J Med. 2018;
4. Kunadian V, Chieffo A, Camici PG, Berry C, Escaned J, Maas AHEM, et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur Heart J. 2020;